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The general problem of mass transport and chemical reaction in spatially periodic
annular flows with entrained catalytic particles is investigated using generalized
Taylor-Aris dispersion theory arguments. Generic formulas are derived for the
effective solute reaction rate, mean axial velocity and dispersivity in terms of the
numerous geometric, kinematic, kinetic and material physicochemical parameters
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260 Q. Iosilevskir and others

defining the complex three-dimensional transport and reaction problem. The
theoretical analysis constitutes a prelude to rationalizing the behaviour (and
optimizing the design) of a class of immobilized enzyme biochemical reactors, in
which the ‘catalytic’ enzyme is distributed over the surfaces of small entrained
particles.

1. Introduction

The following exposition addresses the general problem of mass transport and
chemical reaction in ordered vortical flows, with direct applications to a class of
immobilized enzyme biochemical reactors whose purpose it is to remove a solute (e.g.
protein) from a solvent (e.g. blood) by means of a catalytic chemical reaction. These
reactors are composed of a stationary outer cylinder and a concentric inner cylinder
rotating about its axis, with a net axial flow occurring in the annular gap between
them, as in figure 1. The catalyst (e.g. an enzyme) is distributed either over the
surface of the inner cylinder, or on the surfaces of small, non-neutrally buoyant
particles (or beads), each of which sediments under the influence of gravity relative
to the net (vertical) axial flow.

Given that the outer cylinder is stationary, toroidal vortices will exist in the
annular fluid at sufficiently large rates of rotation of the inner cylinder (Taylor 1923;
Chandrasekhar 1981). This vortex phenomenon (on which is superposed an axial
flow) represents a type of Taylor instability, with the resulting fluid-mechanical flow
pattern formed composed of Taylor vortices. Numerous experiments (see, for
example, Cohen & Maron 1983 ; Koening et al. 1954 ; Coeuert & Legrand 1981) have
demonstrated a significant improvement in the effectiveness of both catalytic bead
and wall reactors at rotation rates exceeding the Taylor instability threshold. This
enhancement is primarily manifested by an increased overall reaction rate, although
several peripheral benefits also ensue (e.g. the reactor does not clog with the crushed
cells that are invariably present in the blood; moreover, the gentle mixing action
provided by the Taylor vortices often proves to be sufficiently mild so as not to
mechanically damage living blood cells). Accordingly, both types of reactors (when
operated at rotation rates above the Taylor instability threshold) have recently
achieved a growing popularity.

The aim of the research reported here is to quantify the effects of Taylor vortices
upon the performance of the bead-containing reactors. (Comparable catalytic wall
reactors will be addressed separately.) Towards this goal we will theoretically
investigate the (non-conservative) diffusive and convective transport of reactive
solute molecules in a spatially periodic vortical flow. The term ‘non-conservative’ as
used here connotes the fact that the solute molecules may disappear permanently
from the system as a result of a catalytic chemical reaction occurring on the surfaces
of the beads. Solute molecules and beads will be modelled as brownian entities, each
undergoing both molecular diffusion and convection. The solute molecules will be
assumed to be of infinitesimal size, whereas the beads will be assumed to be of a finite
size, at least insofar as each bead possesses a non-zero surface area, allowing for both
solute mass transfer between the solvent and beads, as well as solute reaction on the
bead surfaces. The bead radii will be supposed much smaller than the annular gap
between the cylinders, so that hydrodynamic wall effects upon the bead’s motion
resulting from their non-zero size may be ignored.

Phil. Trans. R. Soc. Lond. A (1993)
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gravity

(n'+2)th cell

I
(n’+1)th cell

®)

Figure 1. The annular vortex reactor. The reactor is composed of two concentric cylinders, a
stationary outer cylinder and a rotating inner cylinder. Solvent flows upward (along z-axis)
through the annular gap between the cylinders. The non-neutrally buoyant beads (not shown)
sediment downward under the influence of gravity relative to this upward flow. A single toroidal
vortex-pair represents a unit cell, with ! the length of the cell in the axial direction. Cells are
numbered sequentially asn = 0, +1, +2,..., with » increasing along the positive z-axis. The solute
tracer molecule was initially introduced into cell »” at time ¢ = 0, and is currently (i.e. at time ¢)
located in cell n. Current (a) tracer position vector is R = ze, +ye, +ze,; initial (b) tracer position
vector is R' = a’e, +y'e,+7e,.

Given that a single solute molecule is initially introduced into the reactor at some
annular point (whose position vector is) R” at time ¢ = 0, the conditional probability
density P(R,t| R’) of subsequently finding that molecule at a point R at a later time
¢t is assumed to be governed by an appropriate system of ‘convective—diffusive—
reactive’ equations (Brenner 1980). In general, these equations (incorporating an
appropriate set of (linear) boundary conditions) may be solved numerically for P
at each point R and each instant ¢; however, such an exhaustively detailed (i.e.
macroscale) solution often proves unnecessary in applications (Brenner 1980). In
practice, having initially introduced a known distribution of solute into the reactor,
one generally measures only the total amount (i.e. the cross-sectionally area-
averaged concentration) of solute exiting from the reactor as a function of time,
without actually investigating the detailed concentration distribution existing at
each point R of the reactor at each instant of time. It can be shown (Shapiro &
Brenner 1988) that this area-averaged solute concentration, P, say, may be uniquely
characterized (cf. (10.4) and (10.6)) by three macroscale phenomenological par-
ameters, namely : (i) an effective solute reaction rate coefficient K* (appearing as the
multiplier of P in a first-order irreversible reaction); (ii) the average axial velocity U*
of the solute (which, due to the chemical reaction, is not necessarily the same as the
average velocity V of the inert solvent carrier); and (iii) the axial dispersivity D* of
the solute (which differs in a major way from molecular diffusivity of the solute
through the solvent, and often exceeds the latter by many orders of magnitude;

Phil. Trans. R. Soc. Lond. A (1993)
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262 G. losilevskii and others

moreover, owing to the chemical reaction, D* will generally differ (Shapiro & Brenner
1988) from the axial dispersivity D¥ that would prevail in the absence of reaction, all
things being equal).

The ultimate aim of this research is to parametrically establish the functional
dependence of K*, U* and D* upon the geometrical and operating characteristics of
the reactor (e.g. the radii of the cylinders, the rate of rotation of the inner cylinder,
the annular axial volumetric flow rate, etc.) as well as the physicochemical material
properties of the solute, solvent and catalytic surface(s). To this end, we shall
theoretically investigate the dependence of K*, U* and D* upon the spectral
characteristics of the detailed solvent velocity and vorticity fields, as well as upon the
other fixed parameters of the problem. This task may be conveniently executed
within the framework of generalized Taylor-Aris dispersion theory owing to the
spatially periodic nature (Brenner 1980) of the vortical flow field.

2. Taylor dispersion formulation of the two-phase system

Consider a system composed of a flowing inert solvent containing an entrained
monodisperse suspension of non-neutrally buoyant beads. This two-phase system
will be envisioned as composed of two interpenetrating continua (cf. Haber &
Brenner 1993). In particular, the spatial distribution of beads will be regarded as a
continuum-mechanical field variable, with ¢ = ¢(R, ) the instantaneous microscale
number density or ‘concentration’ of the continuous bead ‘phase’ at a point R of the
reactor at time ¢ (although we will ultimately simplify the analysis by confining
attention to the case where the beads are homogeneously distributed, so that ¢ =
const., independent of position and time). The solute itself may exist either in a
dissolved state within the solvent phase, or in an adsorbed state on the bead surfaces;
an irreversible first-order chemical reaction, serving to deplete the solute, is assumed
to occur on these bead surfaces. No reaction is assumed to occur within the solvent
itself (or on the bounding reactor walls, from which catalyst is here supposed absent).

In the spirit of Taylor dispersion theory (Brenner 1980), a solute molecule will be
represented as a material brownian ‘tracer’. As such, local transport of this solute
tracer may be regarded as occurring by four distinct mechanisms: (i) convective
transport by the flowing solvent; (ii) molecular diffusion within this solvent; (iii)
‘piggy-back’ convection; and (iv) ‘piggy-back’ diffusion, occurring by virtue of the
bead phase’s respective convective and diffusive motions. (Each carrier bead itself
undergoes ‘passive’ convection by virtue of being entrained within the flowing
solvent; ‘active’ convection by virtue of the bead’s non-neutral buoyancy; and
brownian diffusion by virtue of the colloidal beads’ random motion relative to the
local solvent flow.) Overall transport of the solute tracer is necessarily non-
conservative owing to the fact that the tracer may disappear by virtue of chemical
reaction on the bead surfaces.

We will assume that inner cylinder rotation rate exceeds the Taylor instability
threshold, so that the annular flow field is dominated by Taylor vortices, albeit with
a superposed axial flow (e.g. Gu & Fahidy 1985). As these vortices (including the
superposed axial flow) form a well-defined stationary spatially periodic flow pattern
(with spatial periodicity existing parallel to the reactor axis), we may use the well-
known extension (Brenner 1980; Shapiro & Brenner 1988) of Taylor dispersion
theory to spatially periodic systems as the basis for our analysis of the reactor. As
the relevant spatially periodic paradigm embodying this extension is rather abstract,

Phil. Trans. R. Soc. Lond. A (1993)
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Taylor-vortex reactors, Taylor dispersion phenomena 263

we have chosen in the following development to emphasize clarity over generality;
accordingly, all subsequent derivations will be specific to the two types of the
reactors being considered, with a single toroidal Taylor vortex pair comprising the
repetitive basic unit cell. In this context of simplicity, scalar (rather than tensor)
probabilistic moments will be employed, consistent with the axial unidirectional
spatial periodicity (along, say, z-axis). In all other respects, the subsequent notation
and the assumptions will closely follow those used in the general theory for reactive
systems (Shapiro & Brenner 1988).

Let u,=u,(R) and wu, =u,(R) be the respective (spatially periodic) time-
independent microscale vector velocity fields of the interpenetrating solvent (v) and
bead (b) continua; similarly, denote by D, and D, the respective (time- and position-
independent) molecular and brownian diffusion coefficients of the solute and bead
phases through the solvent. Both of the preceding velocity fields will be assumed to
satisfy continuity equations of the respective forms

Vou,=0, V-u,=0, (2.1a,b)
with nu,=0, nu,=0 on the reactor walls, (2.2a, b)

wherein n denotes a unit normal vector on the appropriate surface. Note, that
equations (2.1) imply time- and position-independent solvent density, as well as
time- and position-independent bead-phase number density.

The brownian bead diffusivity D, plays a minor, inherently nonsingular role in the
subsequent theory. As such no mathematical or other difficulty arises in setting
D,, = 0 for the case of large, non-brownian beads, or whenever such an assumption is
warranted. In contrast, in the case of the solvent phase, it is essential that D, > 0;
otherwise, it would not prove possible to attain the asymptotic quasi-steady solute
distribution within a unit cell, necessary for the validity of the subsequent theory.

Let P, = P,(R,t|R";{) and P, = P,(R,t|R’;{) denote the respective conditional
probability densities that the solute tracer is situated at point R at time ¢ (either
dissolved in the solvent or adsorbed on the surface of the beads), given that the tracer
was located at point R at time ¢ = 0 in an initially dissolved or adsorbed state: one
quantified by a single real-valued ‘partition’ coefficient, 0 < { < 1. Explicitly, at
time t = 0,

P(R,0|R";{) = B(R—R'), K(RO0|R;{)=(1-dR—-R). (2.3a,b)

Thus, for example, the choice { = 0 connotes the tracer was initially (at time ¢ = 0)
wholly adsorbed on the beads, whereas with { =1 the tracer was initially wholly
dissolved in the solvent.

The probability densities P, and B, will be supposed governed by convective—-
diffusive-reactive equations of the respective forms

9;JTV+V-JV+S = {8(R—R')8(1), (2.4q)
an N /7 3
V=S +yP = (1= 8(R—R) (1), (2.4b)

in which the conditional probability flux density vectors appearing therein are given
by the fickian constitutive equations

J, =u,P,—D,VP, % =u,P,—D,VP,. 2.5a, b)

Phil. Trans. R. Soc. Lond. A (1993)
10-2


http://rsta.royalsocietypublishing.org/

/,//’ \\
'
{ A

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

264 (. losilevskii and others

In (2.4), the position- and time-independent phenomenological constant vy >0
represents the specific reaction-rate constant governing the local rate of dis-
appearance of solute from the bead surfaces via a first-order irreversible reaction.
Moreover, the algebraically-signed scalar (Haber & Brenner 1991)

S = k,(kyacP,—P,) = k,P,—k, P, (2.6)

represents the rate of solute transfer from the (dissolved state in the) solvent to the
(adsorbed state on the) beads, per unit of superficial volume.t Here, £, = O and &, > 0
are non-negative constants, a is the surface area of a single bead, and the constant

k, > 0 is defined as det

ky =k kyac. (2.7)

Note, that when k£, = 0 no transfer of solute between the solvent and beads is
possible; consequently, in such special circumstances, respective solute transport by
the solvent and beads may be regarded as two independent uncorrelated processes
occurring in parallel. This case will be discussed at length at the end of this
presentation. In the interim, we shall proceed on the assumption that &, # 0.
Subsequently, in §11, the phenomenological coefficients y, &, k,, @ and ¢ appearing
above are interpreted in terms of their respective geometric, physicochemical and
velocity-field functional dependencies.

The corresponding boundary conditions (Brenner 1980) to be imposed upon the
above system of equations are: (i) solute may neither be added to nor removed from
the reactor through its walls; this condition may be formally written as

n-J, =0 on the reactor walls; (2.8a)

(ii) solute is absent from the reactor before its initial introduction into the system
at time ¢ = 0; this requires that

P,=0 forall ¢t<O. (2.8b)

In these, as well as in all subsequent equations, the index « implicitly represents both
the indices b and v; that is

a = (b,v). (2.9)

For example, in (2.8a) the boundary condition n-J, = 0 represents the pair of
boundary conditions

n'J,=0, nJ,=0 on the reactor walls.

Integrating the respective probability densities at time ¢ =0 (2.3) over the
reactor’s infinitely extended annular domain V,j, one finds that

).

©

d*RP, = ¢, f d*RP,=1—¢ at t=0, (2.10a, b)
V(X)

LfVVith s¥ ac the ‘specific surface’, namely the bead surface area per unit of superficial volume, the quantity
P, = B, /s represents the areal density (i.e. surface ‘ concentration’) of solute adsorbed on the beads. In turn, the
respective constants k; and k, are readily identified (Bird et al. 1960) as the solute mass-transfer coefficient and
Henry’s law adsorption coefficient in the equilibrium linear constitutive relation p, = k, P, (see the further
discussion in §11).

Phil. Trans. R. Soc. Lond. A (1993)
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Taylor-vortex reactors, Taylor dispersion phenomena 265
with ReV,, and d®R = dxdy dz. The integral

def

II(t|R"; §) = f d*R[P,(R,t|R';{)+F,(R,t| R'; )] (2.11)
Vao

represents the fotal probability that the tracer is situated somewhere within the
reactor’s annular (effectively axially unbounded) spaced domain at time ¢, either
dissolved in the solvent or adsorbed on the beads. This probability is conserved in the
absence of chemical reaction (in which case IT =1 for all ¢t > 0); otherwise, it
diminishes monotonically with time. Thus,

0<II<1 (t=0), (2.12)

where the equality sign applies only at ¢ = 0 (or in the absence of chemical reaction).

3. Local and total moments

Upon utilizing the axial spatial periodicity of the annual vortex flow field, define
(Brenner 1980) the mth-order (m =0,1,2,...) local and total moments of the
respective pair of conditional probability densities P, and P, as

def )

P t|r;8) =1m X (n—n')"P(r+nle,t|r +n'le,;) (3.1)
n=—co
def
and MY = [ @plr i, 3.2)

with rer,. In these expressions, the integer n =0, +1, £2,... is the current cell
number; n’ denotes the number of the initial cell into which the tracer was originally
introduced into the system at ¢ = 0; [l is the length of a unit cell in the axial direction;
e, is a unit vector parallel to the axis of the reactor (see figure 1); d* = dedydz is
a volume element within a unit cell ; and the domain 7, denotes the superficial region
occupied by a unit cell (as well as the actual magnitude of the unit cell volume). With
the cells numbered sequentially, r = R—nle, = e,x+e,+e,z denotes the (local)
position vector of a point within a unit cell, whereas ¥’ = R'—n'le, = e, x"+e,y +e,2’
denotes the initial local position vector of the solute tracer molecule (within the
unit cell »” into which the tracer was originally introduced at time). Note that in
generalized Taylor dispersion theory (Brenner 1982), r and nle, may be respectively
identified with the continuous local (g) and the discrete global (Q) coordinates.

In subsequent derivations it will prove convenient to represent the respective local
and total moments of the pair of probability densities as column vectors of order
two; explicitly

def PSzm) def Mi’m)
Pm — (P{)m))’ M = (Mﬁ)’")) (3.3a, b)

The velocity fields u, are assumed to be spatially periodic functions, and thus
functionally dependent only upon r, but not #; moreover, the diffusivity coefficients
D, appearing in (2.5) are assumed to be everywhere constant. Accordingly,
substitution of (3.1) into (2.4) leads to the expression

OPm

ot
Phil. Trans. R. Soc. Lond. A (1993)
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266 G. losilevskii and others
(m=0,1,2,...), for the temporal evolution of the local moments; (compare with
Brenner (1980)). Here,
=(H b (3.5)
- —ky kity '

is a 2 X 2 matrix of constant phenomenological coefficients jointly quantifying both
the rate of (conservative) solute transfer (between the dissolved and adsorbed states),
and the (non-conservative) rate of solute depletion by chemical reaction from the
adsorbed state. Additionally,

def gv 0
[Z] —( 0 «i”b)’ (3.6a)
in which, with F' a generic (scalar) field,
def
LY =V-(u,F-D,VF); (3.6b)

that is, the matrix [.#] is a linear second-order differential operator that pertains to
the collective convective—diffusive transport of the solute tracer by both the solvent
and beads.

The boundary conditions to be satisfied by the local moments may be evaluated
(Brenner 1980) directly from (2.8) and (3.1); thus, the condition (2.8a) of no solute
flux at the cylinder walls requires that

n-{u,P™ —D VP{™]=0 on the reactor walls (3.7a)

foreachm = 0,1,2,... for each o = v, b. Moreover, the lack of dependence of the local
moments upon the particular choice of unit cell in the sequence n—n' =0, +1,
+2,... requires that (Brenner 1980)

IPON =0, [PP] =—[=PP, PR = [PO/PO,..., [|PM™| = (3.7b)

Here, the ‘jump’ function operator, defined by the double modulus bars, namely

def

|F|| = F(R+le,)—F(R), (3.8)

with F' a generic scalar function, denotes the increase in the value of F between
equivalent points of adjacent cells. Note that for F any analytic function, the jump
function operator commutes with the gradient operator V = 8/0R = 9/0r; explicitly

VIIF| = [IVF]. (3.9)

As such, one need not impose any first-derivative boundary conditions on the
functions [OP{™ /0z|| (m = 0,1, 2,...), of the type suggested in earlier papers (Brenner
1980 ; Shapiro & Brenner 1988) addressed to spatially periodic systems. In particular,
because of the generic identity (3.9), all first-derivative boundary conditions that
might otherwise have appeared are automatically satisfied by satisfaction of (3.7b).
In conjunction with use of the properties of the jump operator, integration of (3.4)
leads to the following equation for the temporal evolution of the total moments:

dM™ —u, [P +D ||6P(”‘)/az||) ( ¢ )
AIM™ = | g2 AN M 0o O(¢ 1
a4 Jso r(—ub||P§,””||+Db||apfo'")/az|l o 00) 1-¢ (3.10)

Phil. Trans. R. Soc. Lond. A (1993)
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Taylor-vortex reactors, Taylor dispersion phenomena 267

(m=0,1,2,...), in which S, denotes the annular cross-sectional domain of the
reactor; d* = dx dy is a corresponding cross-sectional areal element of that annular
domain; and u, = e, u,, with o given by (2.9), are the axial velocity components of
the respective solvent and bead phases.

4. Macroscale phenomenological coefficients K*, U* and D*

Derivation of the basic Taylor dispersion paradigms relating the macroscale
phenomenological coefficients K*, U* and D* to the prescribed microscale
phenomenological data is addressed in subsequent sections. Prerequisite to the
derivation of such formulas are the formal definitions of these three coefficients,
discussed below.

(@) Definition of K*
In view of the axial spatial periodicity of the Taylor vortex flow field, the (infinite)
annular domain V_ of the reactor may be conveniently decomposed into an infinite

number of geometrically congruent (and kinematically identical) unit cells, each of
volume 7,. Thus, the obvious identity

J d®RF(R) = ;} d*rF (r +nle,), (4.1)
v

w n=—00 J 1,

holds for any (generic) function ¥ = F(R). Hence, by definition (cf. (3.2)), the zero-
order total moments, M® and M{?, constitute the individual probabilities of observing
the solute tracer somewhere within the reactor in the respective dissolved and
adsorbed states at time £, given that the tracer was originally introduced at the point
R’ within the reactor at time ¢ = 0 in a certain initial state, quantified by the phase-
partitioning parameter {. Hquivalently, these moments may also be envisioned as
the respective amounts of solute remaining within the reactor at time ¢ in the
corresponding states, given that the amounts ¢ and 1—¢ of solute were introduced
at the point R’ (at ¢ = 0) into the solvent and onto the beads, respectively. Thus, the
sum

II=M9+M9, 4.2)

constitutes the total amount of unreacted solute in the reactor at time ¢. (The above
identity immediately follows from (2.11), (3.2) and (4.1).)

By using moment-matching methods, it may be demonstrated (Shapiro & Brenner
1988) that in the long-time limit, the relative rate of disappearance of solute from
the system (namely, the reactor) as a whole asymptotically obeys the first-order
irreversible reaction rate law,

dIl/dt ~ —K*11,

with IT defined in (2.11), and K* the reaction-velocity constant. The concomitant
exponential solute decay rate implicit in the above expression, eventually leads to
the following calculational ‘definition’ of the specific reaction-rate coefficient:

_ def d
K* = —lim —[In (MO +MP)]. (4.3)

t—>00

Phil. Trans. R. Soc. Lond. A (1993)
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(b) Definition of U*
The mean global axial displacement z—z" = Az of the tracer at time ¢ from its
initial axial position 2z’ at time ¢ = 0, is given by the expression

defj dR(z—2")[P,(R,t| R ;§)+ P, (R, t|R";§)]
Az === . (4.4)
J d®RIP,(R,t|R;{)+P,(R,t| R ;)]
V.

©

The integral appearing in the denominator may be readily identified (cf. (3.1) and
(3.2)) with the sum M+ M of zero-order total moments or, equivalently, the
‘survival’ probability IT (cf. (4.2)). On the other hand, after a sufficiently long
time following introduction of the tracer into the system, the probabilities P, and
P, become almost constant over a given unit cell, in which case the integral in
the numerator may be closely approximated by the sum M® +M{P of first-order
total moments. In fact, one may demonstrate (Shapiro & Brenner 1988) that,
asymptotically, _
Az ~ (MP +MP) /(MY + M) (4.5)
Thus, in terms of the zero- and first-order total moments, the average tracer velocity
may be defined as def

— _dAz . d (M(l’ +M(1)>
U* =lim—— = lim—|—-———b_} (4.6)
t—o0 dt t—o0 dt MS)) +M{)b)

(¢) Definition of D*
Following the same steps that lead to (4.5), one can 1_demonstrate (Shapiro &
Brenner 1988) that the mean square displacement (Az— Az)? of the tracer from its

initial position at time ¢ =0, may be expressed asymptotically by the following

combination o = AP ~ M+ M (Mi}v +M§)1>)z

MO +M{)°)_- MO+ YO

(4.7)

of zero-, first- and second-order total moments. Accordingly, the effective dispersivity
of the solute may be formally defined (Shapiro & Brenner 1988) as a limit
1 d M4+ > ML 4 JD\2
Zlim— v b v b .
2, de LM DD\ I

D* = —lim— (Az— Az)? (4.8)
(d) Alternative interpretations of K* U* and D*

In lieu of the phenomenological coefficients describing the total solute transport (in
both the solvent and bead phases), one may also define comparable transport
coefficients for the respective individual phases, namely

_def d

* = _Efgﬁ[lnMLw]’ (4.9)
e d (MW
0t =t ) 1
_ def' d M;Z) M;” 2
e 1=t =i | 1

as each of these limits can be shown to exist.
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A sufficiently long time after introducing the solute into the reactor, a quasi-steady
partitioning of the solute between the solvent and beads is obtained (cf. (5.10), (6.3)
and (7.5)), in which the ratio of solute present in both phases attains a time-
independent value (although the actual amounts of solute present in each phase
diminish exponentially in time). In this quasi-steady case, the definitions (4.3), (4.6)
and (4.8) should be formally equivalent with definitions (4.9)—(4.11). And equivalent
they are, as may easily be verified by repeating the subsequent computations (based
upon definitions (4.3), (4.6) and (4.8)) using these latter definitions. Thus,

K¥=K*, U* Dx*. (4.12a—c)

*
a

U, Dr

5. Effective solute reaction rate coefficient K*
(@) Zero-order total moments

Following (3.10) (with m = 0), the temporal evolution of the zero-order total
moments is governed by the equation

AM©
dt

F[A] MO = 3(:5)(159. (5.1)

As [A] is a matrix composed of constant elements, the most general solution of (5.1)
may be sought in the form

M = MO exp(—A ) E, +M©® exp(—A_t)E_, (5.2)
wherein M S_f) are constant scalar coefficients to be determined; moreover,
Ay =gk +ky+y 2 [(ky +ky+y)* -4k, i (5.3)
are the eigenvalues of [4], and

_(EX\ (1 def p k=
Ei:(Eg)_(k)’ ki_klﬂf—Ai: e (5.4a, b)

are the corresponding eigenvectors; that is
[AlE, =A E,. (5.5)

Our prior assumption that k, > 0 assures the existence of two different eigenvalues,
A, > A_, for the system in question. Thus, even in the absence of a chemical reaction
(when A_=1vy =0), the system necessarily manifests exponentially attenuated
temporal behaviour. This fact is related to the eventual establishment of a local
quasi-steady solute partitioning between the solvent and bead phases.

The coefficients M and M{ are determined by the initial conditions prevailing at
t = 0, namely by the physical ‘state’ { in which the solute tracer molecule existed
when it was originally introduced into the system; either initially dissolved in the
solvent, affixed to a bead, or fractionally partitioned between these two states.
From (2.10) (or, equivalently, upon integration of (5.1) with respect to time between
t=0— and t = 0+4), one finds that

7(0 7(0 _ §
M‘+>E++M<_)E_—(1_§). (5.6)

Phil. Trans. R. Soc. Lond. A (1993)
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Consequently, we obtain the explicit values
MO =+ M (5.7)
* k_—k,

in terms of the parameters of the problem. It will be assumed henceforth that
M #0.
The sum . .
II=(1+k )M exp(—A, )+ (1 +k_ )M exp (—A_t) (5.8)

of the zero-order moments, constitutes (cf. (2.11), (4.2) and (5.2)) the probability of
the tracer existing within the reactor at time ¢ (and, hence, not partially destroyed
by chemical reaction on the bead surfaces). In the complete absence of chemical
reaction, namely when y = 0, one has that

Al=0, A, =k +k, k_=k/k, k,=—1,
MO =k, /(ky+ky), MO = ((ky+ky) E—ky)/ (key + Ey),

in which case, IT = 1 for all ¢t > 0, independently of the initial conditions embodied
in #" and ¢. This accords with (2.12).

It is clear, that after a sufficiently long interval of time has elapsed following the
initial introduction of the tracer into the system (cf. (5.20) for a quantification of
the phrase ‘long-time’), the behaviour of the system will be dominated by the
algebraically smallest eigenvalue, namely A_. Hence, by virtue of the definition (4.3)
of the macroscale reaction-velocity constant, we obtain

B = A= i+ gy = [y + oy +7)° = 4y v (5.9)
Thus, for ¢ —>o0, R
MO ~ MO exp(—A_t)E_. (5.10)
In the kinetically controlled limit, where y < k, +k,, one finds from (5.9) that
K*~k,y/(k,+k,), (6.11)

whence K* >0 as y >0, as already observed. In the opposite extreme, wherein the
reaction rate on the surface of the beads is extremely large, so that y > k, +k,, the
effective rate of disappearance of the solute from the system via reaction is controlled
solely by the surface-access coefficient k,; explicitly, we find in this ‘surface access
controlled’ limit that

K*~k,. (5.12)

(b) Zero-order local moments
The temporal evolution of the zero-order local moments is governed by the
equation
QPO
%y

+[LPO+[A] PO = d(r—7) 8(15)(1 Eé‘)’ (5.13)
easily obtained by setting m = 0 in (3.4). Following a known scheme for the single-
phase flow of a chemically reactive solute (Shapiro & Brenner 1988), the most general
solution of (5.13) may be sought in the form

PO 1 MO S Ky
=_MP+ X exp (=2, )| i) ) (5.14)

To n=1 e
Phil. Trans. R. Soc. Lond. A (1993)
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with A, the eigenvalues, and K™ = K™ (r|#";{) the respective eigenfunctions (n =
1,2,...) of the operator [£+A] (with boundary conditions (3.7)). Here, it is
implicitly assumed that A, # A_, A, # A, (n =1,2,...). By following the same steps
(Brenner 1980, Appendix C) as those leading to the comparable result in classical
Taylor dispersion theory, it may be demonstrated (cf. Appendix A) that A, > A_(n =
1,2,...). Consequently, in the asymptotic long-time limit, the zero-order local
moments adopt the respective forms

PO ~ (1/75) M exp (—A_t) (E_+ O,yy), (5.15)

where O, denotes (generic) terms involving the time ¢ that decay exponentially to
Zero as {—>00.
The transition from the general solution (5.14) to the asymptotic solution (5.15) of

(6.13) is clearly characterized by two distinctive timescales,

T =Apm—A)" (5.16)
(where A, denotes the algebraically smallest eigenvalue among A, A,,...), and
T = (A= A) 7t = (ky = A)/ (g kg + (kg — A1)%), (5.17)

corresponding to two different physical processes. In fact, for times ¢ satisfying the
inequality ¢ > 7T}, a quasi-steady, position-independent, spatially uniform solute
distribution

PO ~ (1/7,) M (5.18)
is established within a unit cell, owing to molecular diffusion of the solute (Brenner
1980). On the other hand, for times ¢ > 7}, a local quasi-steady solute partitioning
compare (5.10
(compare (5.10)) PO /PO ~ (5.19)

is established between the solvent and bead phases, owing to interphase solute
transport.

In the sequel we shall not distinguish between these two different timescales;
rather, it will be supposed that the pair of inequalities

t> 1T, t>1T, (5.20a, b)

are both implicitly satisfied in all subsequent asymptotic expressions.

6. Average solute velocity U*
(@) First-order total moments

Following (3.10) (with m = 1), the temporal evolution of the first-order total
moments is governed by the equation

AM® —uy |[PO|+D naP<1>/az||)
1) — d2 v v v v .
g tAIM j ’(—ubuP{,Duwb 1P 2z

We seek an asymptotic solution of this equation for ¢ ~co. With the aid of (3.7b) and
(3.9), together with the fact that in the long-time asymptotic limit the zero-order
local moments are position-independent [cf. (5.13)], one finds that diffusional terms
on the right-hand side of this equation vanish, whereas the remaining expression may
be written in the form

dM®
dt

Phil. Trans. R. Soc. Lond. A (1993)
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def

wherein w,=—| dru, (6.2)
SeJs,

are the average axial velocities of the solvent and bead continua.
As A_ is, by definition, the eigenvalue of [4], we seek (subject to a posteriori
verification) a solution of (6.1) in the form

MO ~ exp(—A_t)[MDtE_+M© W+ 0,,,], (6.3)

where the time- and position-independent scalar coefficient MV, as well as the time-
and position-independent column vector W (of order two) remain to be determined.
With the use of the identity (5.5) for the negative index, substitution of (6.3) into
(6.1) leads to the exact (since all terms appearing therein are time-dependent)
expression

T E 4+ O(4]—A_[I} W = TT© (% ;)E_, (6.4)
b
def

with ] = ((1) (1))
the second-order unit matrix. Observe, that the matrix
k,—A —k
Al—A =("* - 1

ta-am= ("0 TR

appearing on the left-hand side of (6.4) is singular by definition. Hence, upon
multiplying the upper and the lower of the pair of equations (6.4) by k, and k,—A_,
respectively, and subsequently adding the resulting two expressions, one obtains the
simple algebraic equation

MOy +le_(ky— )] = MO[ky w0, +k_(ky— A_) %, ]
for the unknown coefficient M. With the use of (5.4b) it thus follows that
MD = MO [(ky— A2 @y + by by 0,1/ [(ky— A_)2+ ey ey, (6.5)

in which M© is given by (5.7).

At this point, the existing data already suffice to evaluate the average axial solute
velocity U*. In particular, substitution of (5.2), (6.3) and (6.5) into (4.6), and
subsequent use of (5.4b), eventually yields

0% = MO [MO = [(ky— A Wy, + by oy 0,1/ [ (ks — A2+ ke Ky (6.6)

In particular, when the effective reaction rate is zero, namely when K* = A_ = 0, one
finds that

U* = (k,w, +k, @)/ (ky+ k), (6.7a)

consistent with Henry’s law equilibrium solute partitioning (cf. footnote to (2.6) and
(11.2)) between the adsorbed and dissolved states. In the opposite extreme, when
either k, =0 or y—>oo0,

U* = u,, (6.7b)

consistent with fact that under these circumstances no solute is adsorbed on the
beads.

Phil. Trans. R. Soc. Lond. A (1993)
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To complete the determination of the first-order total moments, it remains to find
the vector W. Toward this end, multiply the upper of equations (6.4) (i.e. the ‘v’
equation) by k_, and then subtract the resulting expression from the lower of
equations (6.4) (i.e. the ‘b’ equation). This leads to the expression

[y — A) - k] Wy — (b y By by — A) Ty = (7, — ),

wherein W, and W, are the respective components of W. Subsequent simplification
may be achieved by use of (5.4b), which, after some algebra, yields

k, kg — A

Wv_k4—/1_ (y— A2+ ko ky

Wy = (#y — ). (6.8)

Since only one such equation exists serving to relate the components W, and W,
the latter pair is not uniquely defined. A comparable non-uniqueness exists (Brenner
1980; Shapiro & Brenner 1988) in classical Taylor dispersion theory. However,
similar to the latter case, this lack of uniqueness proves physically inconsequential,
insofar as the phenomenological coefficients K*, U* and D* are concerned.

(b) First-order local moments

First-order local moments are governed by the equation

4P
de

2120414120 = (). 69)
obtained by setting m = 1 in (3.4). Following a known scheme for the single-phase
flow of a chemically reactive solute (Shapiro & Brenner 1988), and employing the
preceding results for the first-order total moments, assume (subject to a posteriors
verification) that the asymptotic solution of (6.9) is of the form

U¥t+ B, + Oeyp 0

1 .~
(1) ~ — 7O — __
P~ M exp U)( 0 U¥t+B,+0

)E_, (6.10)
exp

wherein B, = B,(r) and B, = By(r) are time-independent scalar fields to be
determined, and in which the constant M® is given by (5.7). The average values of
these fields over a unit cell, namely

_ def

B,=—| aB,, (6.11)

o
To To

are closely related to the respective components W, and W,. In fact, by comparing
(6.10) with (6.3), one has that

W,=B,, W,=k_B,. (6.12)
Hence, with use of (6.8),

_ ky— A

B,-B, =m(ﬂv—ﬂb)‘ (6.13)

Substitution of (6.10) into (6.9) yields the pair of (exact) equations
Lotk — A —kyk_ )(B ) - (1)
M Vi=—=U*|_|. 6.14
( —ky/k_ Lotk +y—2A_)\B, 1 ( )
Phil. Trans. R. Soc. Lond. A (1993)
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These may be further simplified with the use of (5.45). In fact, it follows from the
latter that
k_ky=Fky—A_ and k,/k_ =k +y—A_

Thus, (6.14) becomes finally
Lok, —A —(k,—AL) )(B) — (1)
M Vi=—=-U*||. 6.15
(s eorrr )l O

The corresponding boundary conditions to be satisfied by the fields B, and B, are
easily derived (cf. Brenner 1980) from (3.7), and (6.1); explicitly, it is required that

1B, = —1 (6.164)
and n-(u,B,—D,VB,)) =0 on the reactor walls. (6.160)

(Again, because of the generic identity (3.9), it is unnecessary to impose the first-
derivative boundary condition |0B,/0z|| = 0 (Shapiro & Brenner 1988), as this will
automatically be satisfied in consequence of (6.16a).)

7. Effective solute dispersivity D*

Consider now the second-order total moments. Upon setting m = 2 in (3.10), one
obtains

—u, |PO PO+ D, || (/P
0 1/ p)
a [Pb /Pb ]

z

dM®
dt

+[A}M® =f dzr (7.1)

So —u, [P/ PO +D,

wherein the pertinent local moments P and P are given asymptotically by (5.13)
and (6.10) respectively.
In accord with the asymptotic definition (4.8) of the axial solute dispersivity D*,

we seek an asymptotic solution of (7.1) for t—o00. To this end, consider first the
asymptotic behaviour of the right-hand side of (7.1); explicitly,

}

| arf—wapeporen, |2 ey
SO

O 1o+ By

~1M<_°>E;J dzr{—uall(U*t+Ba)2||+Da 5
So

To

+ Oexp} exp (—A_t)

= A(_‘”E;{2U*aat—l d?ru, ||B§||+&f dzr QBEL +Oexp}exp(—/\_t)
ToJs, To Js, 0z
= MO B, 2U*,t+ G, +0,,) exp (—A_t), (7.2a)
def
wherein G, = —lf d?ru, ||B§||+&J d2r Esz (7.2b)
ToJ s, 7o Js, 0z

More explicitly, upon transforming the surface integrals into corresponding volume
integrals via use of the boundary conditions (6.16b) together with the identity (3.9),

Phil. Trans. R. Soc. Lond. A (1993)
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and after applying the continuity equations (2.1) for the pair of velocity fields, one
finds that

o =L a—v @, B)+D, VB

2
7-O Ty

— 2 @®rH—B_V-(,B,)+D,VB, VB, +B,VB,]}

To To

= 2| @n(—B,#£B,+D,VB,-VB,). (7.3)

To T
Upon using (7.2a), equation (7.1) adopts the asymptotic form
dM® 20*u,t+G,+0 0 )
exp.

exp
dt 0 20w, t+G,+ 0

+[AIM® ~ M©® exp(—A_t) (
(7.4)

As A_is, form (5.5), an eigenvalue of [4], we seek (subject to a posterior: verification)
an asymptotic solution of (7.4) in the form

M® ~ [MPE_£2+M9 Vt+M® T+0,,,] exp(—A_t), (7.5)

wherein M® is a time- and position-independent coefficient; ¥ and T are time- and
position-independent column vectors (of order two). The vector T will prove to be
immaterial in the subsequent discussion, whereas the computation of M® and V will
be addressed in the same manner as were ¥® and W in the previous section.

Substitute (7.5) into (7.4) and collect together all similar terms, thereby obtaining,
exactly (compare with (6.4)),

2MP E_+MO{A]|—A_[I]} V = 20+M© (% £>E_ (7.6)
b
and VA {A] =[]} T = ((f) (9 )E_. (7.7)
b

We shall now follow the very same steps that led to (6.5) and (6.8). In fact,
respectively multiply by k, and k,—A_ the upper and the lower equations of (7.6),
and add together the resulting two expressions to obtain the following expressions for
M. R o

MOk, +k_(ky—2A)] = O*MOlk,w,+k_(ky—A_) @y).

Hence, upon utilizing (5.4b) and (6.6), one finds that
M® = PO g+, (7.8)
Multiply the former of equations (7.6) by k_, and subtract from that result the
second of equations (7.6), so as to obtain the expression
[k_(ley = A_) +leg) Vo= (l_key + ke +y = A0) Wy = 20k _(5,— ), (7.9a)

relating the components V, and V, of V. The additional equation required to
determine each of these components separately may conveniently be obtained from
(7.7) upon multiplying the upper and the lower of these equations respectively by k,
and k,—A_, and subsequently adding one to another. This yields

ky Vot (ky—A) V= ky G+ k_(ky—A2) G, (7.90)
Phil. Trans. R. Soc. Lond. A (1993)
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Thus, with the aid of (5.4b), one obtains
7 (k —A ) — — k4k10v+(k4_/\—)2Gb
— ofT* 1
e e vy ey G ey vy sy e (LG
ky—A_ e Ky ky(ky—A0) I Y N +(k4—A_)ZGb}
= — — A4 108
b= { P = ¥k by T T S ey ) 1O

for the components of V.

The solute dispersivity may now be derived from the formal definition (4.8) by
substitution of the pertinent expressions (cf. (5.2), (6.3) and (7.5)) for the total
probability moments. This gives

me AV W+ Wy 1V +W U*Ev+k_1§b

Vv b__
D 21+k_ v 1+k_ 21+lc 1+k_

Introduce (5.4b) and (7.10) into this equation, so as to obtain

D kaky Gyt (k= A )G, &y U* {A_(lc4—/l_)2(ﬂv—ﬂb) 5 (k4—A_)B}
2[(k - —) +k k4] k1+k4_/\— [(k4_/\—)2+k1 k4]2 v kl °f

On the other hand, it follows from (6.15) and (7.3) that

kl k4 Gv+(k4_/\—)2Gb _ @ dsr (k4_/\—)sz+k1 k4Bv
o (k4_A—)2+k1 k4

20(ky = A+ ki ky] 7y
+_1_f d3rk1 k4(k4_)(—) (Bv_Bb)2

To (]C4—/\_)2+k1 k4
A gopBa=A)Dy VB, VB, +ky k, D, VB, VB,
To Ty (k /1 ) +IC IC
Consequently,
= ~ kyky(ky—22) 1
% = e o 1A\t T ) 3 _ 9
D*¥=U +(Ic /\)+klc70£dr(B" By)
(ky—A_)* D, kyk, D, \ ,
+(k4_/\ ) +k k To (VB ) (]C4—/\_)2+]C1]C4 T, d Y(VBV) y
wherein
def 2D o) _ B
) (]C —A_ )Bb+k1/€4B ]cl {A_(k4—/\_)2(u _ub) B ]C A k}
H= v_ v B _ 7
(ky—A_)2+k, k, fey+ley—A_ | [(key—A )24k, ky )2 +bO,+ kl

Substitution of (6.13) into the above reveals that H = 0 identically. Thus, the solute
dispersivity may be written as

_ k1k4(k4_/\—) lj 3 _ 2
T B

(ky—A_)? D, ky k, D, 3 2
(b= APy 70 3o, B G S ey 7, J, STV (D)

consisting of a sum of three terms, each involving squared integrands.

D*

+

Phil. Trans. R. Soc. Lond. A (1993)
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It is easily demonstrated that D* is strictly positive. To do so, note firstly that the
possible solutions B, = constant are incompatible (Brenner 1980) with the system of
equations (6.15) and (6.16) defining B,. Secondly, observe (cf. (5.3)) that with the
strictly positive choice £, > 0, the following inequality prevails:

ey = AL = Yy =y =y +[(ky— ky— ) + 4y by ]} > 0; (7.12a)

k. k
moreover, lim ———i-i———] =1. 7.12b
k40 [(k4—)(_)2+k1 k4 ( )

Consequently, since D, is (assumed) strictly positive and D, non-negative, and since,
of the three integrals appearing in (7.11), the final two are each strictly positive,
whereas the remaining one is non-negative, it follows that D* is itself strictly
positive. Q.E.D.

When the effective reaction rate is zero, namely when K* = A_ = 0, the preceding
expression for D* reduces to the form

k, D

— k ok, 1
N L 3 —B.)?
D i fdr(Bv b) +lc1+k4 7"

f Er(VB,) +—2 P—Vf d*r(VB, )2,

ki +ky T,
(7.13)

in agreement with a previously known result (Haber & Brenner 1993) for non-
reactive systems. Furthermore, when there is no adsorption of solute onto the beads,
namely when k, = 0, one finds that

D* = P_VJ d3r(VB,)?, (7.14)

To

again in agreement with a known result (Brenner 1980) from classical Taylor
dispersion theory for a non-reactive single-phase system.

This latter expression (7.14) is also applicable in the case when the reaction rate
on the surface of the beads is extremely large, so that y > k, + k,, as may easily be
verified by direct substitution of (5.12) into (7.12). In fact, under these circumstances,
all the solute that ‘arrives’ at the beads’ surface is ‘immediately’ destroyed by the
chemical reaction, leaving the macroscale transport of the solute to be controlled
solely by the solvent.

8. The case k; =0

It has been supposed in the preceding analysis that k; > 0, corresponding to a non-
zero rate of solute transfer between the solvent and beads. Consider now the limiting
case for which this interphase transfer rate vanishes (i.e. when k, = 0). In doing so,
one may conveniently distinguish four subcases.

(i) The solute is initially introduced into the solvent (i.e. { = 1) rather than onto
the surface(s) of the bead(s). This initial partitioning implies that no solute can
henceforth be transported by the beads, since no interphase solute transfer can
subsequently occur. Consequently, one may use a known result (Brenner 1980) from
classical Taylor dispersion theory for the purely single-phase (solvent) continuum
transport case, namely

D

Rr=0, Ot=u, D¥=2v f &r(VB,). (8.1a-0)

To
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(ii) The solute is initially introduced onto the surface(s) of the bead(s) (i.e. { = 0)
rather than into the solvent. Similarly, as with the previous case, no mechanism
exists for interphase solute transfer, whence the solute cannot dissolve in (and hence
be transported by) the solvent. In such circumstances, one may use a known result
(Shapiro & Brenner 1988) from classical Taylor dispersion theory for the purely
single-phase reactive (bead) continuum transport case, namely

Kx=vy, U*=u, D*= %J d*r(VB,)2. (8.2a-¢)
0 Jr7,

(iii) The solute is initially introduced simultaneously into both phases by
partitioning (i.e. 0 < { < 1), and a chemical reaction occurs on the surfaces of the
beads (i.e. y > 0). In this case, although k&, = 0, the system still possesses two
separate eigenvalues, namely 0 and y. Consequently, the expressions obtained in
preceding sections for the macroscale parameters remain applicable, albeit with
k,—~0 and k,—~0. In particular, upon carefully evaluating the pertinent limits in
(6.9), (6.6) and (7.11) (bearing in mind that with y > k,+ k,, the lowest eigenvalue is
given by A_ = k, (cf. (5.12)), one finds that

K*=0, Ur=u, D*=2v| aswva,y. (8.3a—c)

To To

This result is consistent with asymptotic behaviour of the system, since (with y > 0)
that portion 1—¢ of the solute that was initially introduced into the bead phase
will have been completely depleted after a sufficiently long period of time has
elapsed. The remaining portion ¢ of the solute that was initially dissolved in the
solvent does not undergo any chemical reaction, and hence is axially transported
undiminished by the solvent at a rate governed by the classical single-phase (Brenner
1980) non-reactive values cited in (8.3).

(iv) The solute is initially introduced into both phases by partitioning (i.e. 0 <
¢ < 1), and no chemical reaction occurs on the surfaces of the beads (i.e. y = 0). The
absence of reaction requires that

K*=0. (8.4a)

To find the pertinent total moments of the probability density, one may either repeat
the preceding derivations with [4] = [0], or use known results from classical Taylor
dispersion theory (Brenner, 1980); both lead to the same result, namely
M&O) —_ g, M{)O) — 1_€’
MP ~ MO (U, t+B,+ 04yp),
M ~ MO+ G4 Tt ).

In the preceding, the 7, are physically immaterial constants, whereas the constants
(I, are explicitly given by the expressions

G, = 2@‘0(,LBL,‘+2DO‘l d*r(VB,)*.
To T
Moreover, the B-fields satisfy the pair of equations
%Ba =—1q,

3
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Taylor-vortex reactors, Taylor dispersion phenomena 279
subject to the boundary conditions (6.16a, b). Consequently, using the respective
definitions of the average velocity (4.6) and dispersivity (4.8), one finds that

and U* = Lu,+ (1= w, (8.4b)

5* = C(l - g) lim [(av_ﬂb)zt-i- (av—ab) (Ev_Bb)]

t—>00
5 3 2 1-¢ 3 2
+D, d3r(VB,)2+ D, d3r(VB,)2.
To Ty TO Ty
The latter reduces to the respective alternative forms
¢ 1-¢ -
* = DVT—0 70d3r(VBV)2+Db ™ Tod3r(VBb)2 (T, = %), (8.4¢)
0 (U # ), (8.4d)

according as the mean solvent- and bead-phase velocities are the same or different.
The singular result D* = co for circumstances in which the average axial velocities of
the solvent and beads differ, indicates that in this case one cannot simply describe
the overall macroscale solute distribution (both in the dissolved and adsorbed states)
by a single macroscale velocity U* and single macroscale dispersivity D* (cf. (10.6)).
Rather, separate macrotransport equations, each involving its own phenom-
enological coefficients U* and D* (cf. (4.10), (4.11) and (10.4)), would be required for
the separate solvent and bead phases.

9. Examples

The derivations thus far have been quite general, the only major assumption being
that the system under consideration possesses unidirectional spatial periodicity. It is
apparent, however, that the B-field equations (6.15) and (6.16) are not generally
amenable to closed-form analytical solution in this general case. Moreover, as the
number of particular cases in which such solutions may be attained is actually quite
limited, a comprehensive parametric study of dispersivity phenomena in the bead
reactor has to be executed numerically. With the latter study to be published
elsewhere, the theory just developed may nevertheless be elucidated here by
considering a particular case wherein the brownian diffusivity D, of the colloidal
beads through the solvent is negligible. As the size of the beads normally used in the
reactor is in excess of 100 pm, this assumption is quite realistic.

Introduce the (spatially periodic) fields

def

B,=B,—2 (9.1)
into (6.15) and (6.16) so as to establish the pair of equations,
Ve (u,B,—D,VB,)+ (ky—A_) (B, —B,) = u,— U*, (9.20)
Ve By~ () = - 0%, (9.20)
ky—A_
governing these fields, together with the respective (homogeneous) boundary
conditions o <
1By =By =0 (9.3a)
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280 G. losilevskii and others
and n-VB, =0 on the reactor walls. (9.30)

In deriving (9.26) we have conveniently used (5.4b) to eliminate y, whereas in
deriving (9.36) we have used the boundary conditions (2.2) imposed upon the
velocity fields, together with the fact that n-e, = 0 on reactor walls.

In view of (2.1), (9.3) and (6.6), substitution into (7.11) of (9.1) and (9.2b), together
with the supposition that D, = 0, yields

KT

To

D* = KD+ K37 (w, —u,)* +

f d3r(u, —,)?

K d*r[(VB,)"- Dy, (VB,)+ (VB,)! D, (VB,)], (9.5)

in which ol
T = (k=A% (ky k) (9.6a)
is the timescale for interphase solute transport (compare with 7}, (5.17)), and
K=k k,/(k,ky+ (k,—AL)?). (9.60)
Moreover, with I the dyadic idemfactor,
D,=D,I (9.6¢)
and D, = Tu, u,, (9.6d)

The latter may be envisioned as the ‘effective diffusivity dyadic’ of the adsorbed
solute. Note that in contrast with diffusivity dyadic (9.6¢) of the dissolved solute,
which is position-independent, the value of D, varies locally within the unit cell.
Moreover, it is a well-known fact, that diffusivity is necessarily independent to the
choice of the frame of reference. In this context, the velocity field u, appearing in
(9.6d), should be understood as a relative velocity; the latter being measured with
respect to the reference frame in which the velocity field is time-independent.

Consider the above expression for the dispersivity. With usual Taylor—Aris-type
dispersion contributions for the dissolved solute embodied in the first and last of the
five terms appearing on the right-hand side of (9.5), the remaining terms represent
the contribution of the ‘piggy-back’ convection of solute by the beads. In fact, in
complete analogy with classical Taylor-type convective dispersion contributions,
characterized by the ability of a solute molecule to cross stream lines (and hence to
sample different velocities), the new contribution is characterized by the ability of a
solute molecule to change its physical state, namely from being dissolved in the solute
to being adsorbed on the surfaces of the beads and vice versa. (As the solute
molecules move at different velocities in each of these two states, this difference
provides the Taylor dispersion mechanism manifested in the non-traditional
dispersion contributions appearing in (9.5).) In this sense, the characteristic timescale
(9.6a) of the latter process is completely analogous to the diffusive time scale d?/D,
underlying the classical convective contribution to Taylor dispersion (here, d is the
gap between the cylinders).

Within the context of the prior assumption that D, = 0, consider the following two
cases.

(i) The reactor operates at rotation rates below the Taylor instability threshold.
In such circumstances, Taylor vortices are absent from the flow field, whence the
respective solvent and bead velocity fields are strictly helical, as well as being
independent of the axial coordinate z.

Phil. Trans. R. Soc. Lond. A (1993)
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Select a right-handed cylindrical polar coordinate system (w, ¢, z), with (e, e, €,)
the respective basis unit vectors. In view of the assumptions imposed upon the
velocity fields, we assume subject to a posteriori verification that the modified B-
fields are independent of ¢ and z. Thus, with

u, =u,(w)e,+v,(w)e,

the respective velocity fields, R, and R, the radii of the inner and the outer cylinders
respectively (see figure 1), (9.2) and (9.3) become

%%

D,d [ dB L _
. v \4 _ — — _ 3k

w dw(w dw>+(k4 /\—)( v Bb) uV U > (9.7“)

bk, _

— —_[*
o A (B,—B,) =u,—U (9.7b)

S s dB, 3

and 1Byl = 1Byl =0, —= o 0. 9.7¢, d)

A closed-form solution for the dispersivity now immediately follows. In fact,
substitution of (9.7b) into (9.7a), and integration of the resulting equation with
respect to @ subject to the boundary conditions (9.7d), yields

dB (- _
V— — k __ [k
P KDijRldww(U U*), (9.8)

def 2
. (ky— A ) up+k kyu
w * — v
herein U i A+ ko By

is the ‘effective’ solute velocity. (Note that in the case considered, U* = U*(w).)
Thus, by introducing (9.8) into (9.5), one eventually finds

2KT (B
R-R

2 dew/ w’ _ 2
[ ket % __ [T*
+KDV(R§"R%)L:I — URldww(U U )] . (9.10)

The D, and D3 contributions embodied in the first and the last terms of the latter
equation are similar to those appearing in conventional Taylor-Aris dispersion
expressions. However, the additional dispersion contribution, embodied in the
second and the third terms, is independent of the solute diffusivity D,. This
contribution possesses no counterpart in classical Taylor dispersion theory, a fact
which is clearly illustrated by considering the example of the homogeneous plug-type
flow, u, = @, for both the solvent and beads. In such circumstances, (9.10) yields

D* = KD, +K*T(w, — @)% (9.11)

(9.9)

D* = KD, +K* T, — 1,)* +

dw w(u, — @,)?
Rl

Owing to the homogeneity of the flow, the convective contribution to the dispersion
arises solely from the bead/solvent velocity difference. When this difference is zero,
namely when #, = #,, one obtains D* = KD, . In particular, in the non-reactive case,
v = 0, this reduces to

D* =k, /(k,+ky)D

Phil. Trans. R. Soc. Lond. A (1993)
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Thus, D* < D,. The fact that the solute dispersivity is less then the molecular
diffusivity through the solvent arises from the fact that some of the solute is
adsorbed on the surface of the beads, and we have assumed that the beads themselves
do not diffuse.

Appearances to the contrary notwithstanding, it cannot be concluded from (9.11)
that dispersion phenomena of this type exist when the solute diffusivity D, — 0. This
restriction arises from the singular nature of the dual limit D, = D, = 0, implicit in
(2.4) and inequality (5.20a). In fact, consider the case wherein the gap between
cylinders is relatively small, namely d < R;, and for which the velocity fields
u,=u,e,+7,e, are uniform. It is easily verified by direct substitution that under
these circumstances,

DAy, ks ([DADy kb, T
2* " 2K(k,— ) 22 ' 2K(k,— )
4

D D, ki k :
—(nzd—;+k4—/\_)<n2ﬁ+ﬁ)+k1 k}
4 —

Amin = /\— +

is the second algebraically smallest eigenvalue of the operator [£+A] (cf.
(5.13)~(5.16)), whereas

K™ — g, ¢) sin [m(2o— Ry~ Ry)/2d]
is the respective eigenvector. When both diffusivities become vanishingly small, i.e.

when
A%k, k
D 14
(DV—I- b < k4—/\_>’

the difference

oo L Dk Dy, = A

Amin —A- T, " d? eyhey+ (ky— )2

becomes vanishingly small as well, whereas the respective timescale 7} (cf. (5.16))
become infinitely large. Thus, the inequality (5.20a), underlining the above theory,
cannot be satisfied for any finite t, however large.

In the absence of the beads (corresponding to k, = 0), and when the gap between
the cylinders is sufficiently small to satisfy the inequality d < E,, the preceding
problem reduces to the well-known Taylor—Aris problem of flow and dispersion
between parallel planes (Wooding 1960). From (5.3) it followsthat A_ = O when £, = 0,
whence, the dispersivity (9.10) adopts the form

_ 1 R, o’ 2
* =] _ / —a )y
D 1 V+Dvszl dw {JR, dw(u, uv)}

For Poiseuille flow between parallel planes

- . 2
uv=%ﬁv[1——(2w g; Rl)},

whereupon integration yields the expression

D* =D, +u2d?*/210D,,
in accord with Taylor—Aris result for this case (Wooding 1960).
Phil. Trans. R. Soc. Lond. A (1993)
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(ii) The Peclet number |u, X e4d/D, is small as compared with unity and,
simultaneously the annular gap is relatively small, so that d € R,. Under the former
of these assumptions, the modified (spatially periodic) B-fields are governed, to
leading order, by the equations

—D, V2B, + (k,—A_) (B,—B,) ~ u, — U*, (9.12a)
k k . . _
~ _JT*

-y (B, —By) ~ uyy— 0%, (9.120)

with boundary conditions still given by (9.3). Upon substitution of the first of (9.12)
into the second, we obtain

V2B, ~ — (U*—U*)/KD,, (9.13)
in which U* is given by (9.9). When d <R,, the above equation may be conveniently

solved using Fourier series. In fact, suppose that the coefficients Uy, appearing in the
complex Fourier expansion

Us—T*= Y 3 U"exp (i2nmf+inn9) (9.14)
M=—00 N=—00 l d
are known. Upon substitution into (9.13) one obtains the solution

o [ee) 0 . 2 . o
B,= ¥ X Blexp (12nm—+17m—), (9.15a)

m=—00 N=—c0 ! d

1 4 2 2\—1

in which B~ FKD‘(”%J“Z?) U (Im|+]n| # 0). (9.15b)

Thus, with B, approximated by (9.15), and since
(VBy)t- Dy (VB,) < (VB,)!- D, (VB,) when |u,xe,d/D, <1, (9.16)

the information already available suffices to evaluate D*. Toward this end,
substitute explicit expressions (9.15) and (9.16) into (9.5) to obtain

7 R,
D* =~ K[Dv + KT (w, —w,)? +% dzf dw(ub—ﬁb)z}
0 R,

1 00 0 4m2 nz -1 " Trem
toas T X (12 +ﬁ) on U

V m=—00 n=-00

On the other hand, with F'?, denoting a respective coefficient in a complex Fourier
expansion of a (generic) real-valued function ¥(w,z), the identity

Fn Fon = |Fn )2 (9.17)

holds for any m and n. As the velocity U*— U* is indeed a real-valued function, one
eventually finds that

P NK[D tieTE ldf dzj dw(u, — @) ]
© © Am?  n? .
—_ ]ﬂ 2. .
+ 2KDvm§wnE (12 +d2) U (9.18)

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

a
\
\
8 \
i

//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

284 G. losilevskit and others

Finally, introduction of the complex Fourier expansion

wy—Ty = Y 3 ugexp(iznm§+inn%), (9.19)

Mm=—00 N=—00

into the penultimate term of the preceding expression, permits (9.18) to be rewritten
in the symmetrical form

D* ~ KD+ K*T(w,—u,)’+ % 3 {KT|%|2+

Mm=—00 Nn=—00

1 4m? n?\!
m—(—lT-l'ﬁ) |U;;|2}. (9.20)

Assume for the sake of argument that the Taylor vortices are simply superimposed
upon an otherwise uniform (Poiseuille) flow. With the expansion coefficients uy and
Uy (n # 0) pertaining only to the uniform flow, and the remaining (n # 0, m # 0)
coefficients pertaining only to the circulatory flow, the resulting increase in solute
dispersivity arising from the presence of the vortices is apparent.

10. Asymptotic formulation of the macroscale transport process

Within the framework of Taylor dispersion theory for spatially periodic systems
(Brenner 1980), the terms ‘macroscale’ and ‘long-time’ respectively connote that: (i)
the behaviour of the system is being contemplated on a length scale, L, say, that
is large compared with the characteristic linear dimension / of a unit cell (whence
L > 1); and (ii) that a sufficient time has elapsed for locally quasi-steady solute
distribution state to prevail within a generic unit cell (cf. (5.16)—(5.20)).

Since, in the present circumstances, the spatial periodicity is posited to be
unidirectional with respect to the reactor axis, the macroscale problem acquires a
one-dimensional character. In this context, with Z = »nl (and Z" = »l), let

def

P(Z, 4|7 ¥ Q) =f BrP(r+e,nl t|¥ +e,nl;0), (10.1)

be the conditional probability density that the solute tracer is situated somewhere
within phase « in a given cell n at time ¢. For Z = O(L), (or, equivalently, [n—n'| >
1), the macroscale variable Z will henceforth be regarded as a continuous (rather
than discrete) global-space coordinate. On physical grounds, P, is necessarily
dependent only upon the difference Z—Z7’, rather than upon Z and Z’ separately.
Moreover, in the long-time limit, P, necessarily ‘forgets’ the precise local position #/
within the unit cell at which the tracer was originally introduced into cell n” (Shapiro
& Brenner 1988). However, as subsequently discussed, P, necessarily retains memory
of the solvent/bead initial partition distribution parameter {. Thus, after sufficiently
long time following the introduction of the solute tracer into the system, one can
expect the asymptotic functional dependence

P~ PZ~27/,1]0) (10.2)

explicitly displayed in the latter argument of P,.
Asymptotic matching of the total microscale moments M{™ (cf. (3.2)) with the
comparable total macroscale moments,

™t ) difr dzz™P,(2,t| ) (10.3)

—00
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(m=0,1,2,...), allows one to establish (Shapiro & Brenner 1988) the equation

oP _*E)I_’_—*@ 7% P — 170 _
§+U 7 D ©Z2+K P=MQOE_SZ—-Z)6(t) (A, #A), (10.4)

governing macroscale transport of the solute in the long-time limit. Here,

_ def Pv
P= (13b>’ (10.5)

consistent with previously adopted notation (3.3a, b); moreover, using (5.7) and
(5.4a, b), we have explicitly that

e A A D1 _ k(10— (kA Ky
MPQE =— =3 (k)‘ A, —A) (@_A_)’ (106)

as the initial-condition coefficient appearing on the right-hand side of (10.4).

Note that the phenomenological coefficients K* U* and D* obtained by the
moment-matching scheme are the same for both phases (as long as the interphase
transport is non-zero) in accord with our previous results (4.12). Moreover, these
coefficients are independent of the initial tracer data; explicitly of the microscale
position #” and %', as well as of the initial partition parameter {.

The solution of (10.4) satisfying the boundary condition that P,—0 as |Z —Z’| >0
is (e.g. Chandrasekhar 1943):

PZ—7't|1Q) =M GZ—~7Z ) E_, (10.7)
1 1 _ _
where G(Z, t) = m exp [—W*t(z— U*t)Z—K*t], (108)
is the (normalized) Green’s function of equation (10.4). The pair of macroscale
conditional probability densities P, and P,, as well as the total conditional
probability density,

_ dof (k=2 C
P(Z—-7',t|¢ =P,+P, L 174+
( |€) b kl(/\+_/\_)

(ky+hy,—A)G(Z—Z' 1), (10.9)

are functions of the initial partition parameter {. In other words, the amount of the
solute remaining in the system after a sufficiently long time will depend, in general,
upon what portion { of the tracer was initially introduced onto the bead surfaces.
This residual dependence of P (but not of the macroscale phenomenological
coefficients K*, U* and D*) upon the initial partition data is similar to a comparable
result in classical (i.e. ‘single-phase’) Taylor dispersion theory (Shapiro & Brenner
1988), where the solute may undergo (a first-order irreversible) catalytic chemical
reaction on the walls of the vessel. In that case, the amount of the solute left in the
system after a sufficiently long time will depend upon the initial distance between the
tracer and the catalytic wall.

The dependence of P upon the initial partition data ¢, as embodied in the
appearance of the fictitious initial condition appearing on the right-hand side of
(10.4) in place of the true initial condition, namely

P(Z—17,0|%) =5(Z—Z')(lf€) (10.10)
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(derived from (2.3)), seems to be a direct consequence of the fact that (5.1) governing
the temporal evolution of zero-order total moments possess two eigenvalues. As only
the algebraically smallest eigenvalue represents the reaction rate coefficient K*,
macroscale equations such as the left-hand side of (10.4), namely

@ "*a_P_ "*92__}__) %P — (0)

at+U 7 D 8Z2+K P= 0 (t>0), (10.11)
do not accurately represent the temporal evolution of the system at those ‘short’
times, i.e. 0 < ¢ < O(71}, T;), for which inequalities (5.20) fail to be satisfied. Thus, if
a disproportionate amount of solute was initially present on the reactive bead
surfaces (compared with that initially present in the inert solvent), then a
‘disproportionate amount of solute’ will have been destroyed via reaction during the
interval preceding the time (cf. (5.20)) at which (10.11) does become applicable.
Subjecting the latter equation to the fictitious initial condition,

P(Z—7,01) =M dZ—Z)E_, (10.12)

nullifies this initial imbalance, and effectively restores the proper asymptotic
solvent/bead proportions B
P,/P, ~ k_ (10.13)

(cf. (5.19)). The simplicity of the form adopted by this fictitious initial condition, in
contrast with that for the classical reactive (Shapiro & Brenner 1988) case, arises
because of the fact that only two eigenvalues characterize the temporal evolution of
the zero-order total moments, as opposed to a comparably infinite discrete spectrum
of eigenvalues pertaining to the inhomogeneous single-phase system.

In this context of fictitious initial conditions, note that if no reaction occurs on the
beads surfaces (i.e. y = 0), then A_ =0, A, =k, +k, (cf. (5.3)) and, consequently,

- 1 (k
MNOE_= H.
- - kl + k4 (k'4>

As such, the long-time asymptotic distribution of the solute is independent of the
initial state { of the tracer, a fact consistent with the previous discussion. Similarly,
if the initial partitioning ¢ is chosen such that it already corresponds to the quasi-
steady asymptotic partitioning (10.13), namely

E=1/(+k.),
then the true and fictitious initial conditions become identical, since then (following

(10.6)),
jop - Utk)—0+k)(1) 1 (1) _ (¢
e VS [ (lc )_ 1+k—(k—)_(1“5)'

11. Discussion. Functional dependence of the macroscale phenomeno-
logical coefficients upon the microscale parameters defining the system

The principal results of this paper are embodied in the respective generic
expressions (5.9), (6.6) and (7.11) for the three macroscale coefficients K*, U* and D*.
The first two coefficients are expressed more-or-less directly in terms of the given
microscale phenomenological data, or elementary algebraic variations thereof. As

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
/[

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
g\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Taylor-vortex reactors, Taylor dispersion phenomena 287

such, calculations of K* and U* are immediate ; these are described below. However,
computation of D* via (7.11) necessitates that the B-fields, defined by (6.15) and
(6.16), first be solved for as an intermediate step in the calculation. Although we have
derived analytical results in §9 for several special cases, solution of these coupled
second-order partial differential equations is, in general, a daunting task, one which
can only be accomplished numerically. This is especially true given the complex
structure of the Taylor-vortex velocity fields appearing therein. Such calculations
are reserved for a companion paper, which will also include a comparison with
experimental data in the parametric range of interest in applications.

(a) Effective reaction rate K*

In discussing the functional dependence of K* upon the microscale parameters
characterizing the problem, it is convenient to recast (5.9) into a form that clearly
distinguishes between intrinsic or material physicochemical parameters, and
externally-imposed parameters, the latter being those under the control of
experimentalist, and hence independently manipulable. In this context, it is
convenient to introduce three dimensionless quantities: (i) a Damkohler number,

def

Y Y
0= = ; 11.1
ky+k,  ky(1+sky)’ ( )

(ii) the product sk, of the Henry’s law adsorption coefficient k, (which has the
dimensions of length) and specific surface s of the beads (which has the dimensions
of a reciprocal length);} and (iii) the combination,

def 8]62 8

T T sk, (1+0) (11.2)
In terms of these alternative parameters, (5.9) may be reformulated as
— )
* = —_—
K 8k1k21+8F(K)’ (11.3)
. 1 1
wherein F(k) = —2;[1—(1—4K)2]. (11.4)

Since «, defined in (11.2), spans the range 0 < « < 1, it is readily established that F(«)
is monotonic, and varies only over the bounded.interval 1 < F(x) < 2. This latter
property permits a complete and elementary delineation of the qualitative properties
of K* over the complete parametric range of interest. In particular, upon noting that

k-0 aseither 6>0 or d—>0 or sk,—>0, (11.5)
one obtains the limiting value

K* = sk, kzﬁ (k—>0).

This constitutes a generalization of (5.11) and (5.12), previously derived.
Note that although the effective reaction-rate coefficient K* is explicitly

t Following the Henry’s law constitutive relation outlined in connection with the footnote to (2.6), the
product sk, actually represents the equilibrium ratio of the respective amounts of adsorbed and dissolved solute
at each point R of a non-reactive system.
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independent of the velocity field, there nevertheless exists an implicit dependence,
arising from the generic dependence of the mass transfer coefficient k, upon the
microscale velocity field.

(b) Average axial solute velocity U*

Using the notation adopted in the preceding subsection (6.6) for average axial
solute velocity U* adopts the form

2 2)-1

U* = {u’v+sk2 [1 —r?_-gF(K)] ﬁh} {1 + sk, [1 —%F(K)] } . (11.6)
This velocity is clearly independent of the mass transfer coefficient &, for a given
Damkohler number §. As the Henry’s law adsorption coefficient k, is, by definition,
independent of the velocity field, it thus follows that U* is both explicitly and
implicitly independent of the circulatory nature of the velocity field. It does depend,
however, upon the respective average axial velocities of the solvent and bead
continua, namely 7, and #,. (Insofar as its lack of dependence upon the ‘strength’
of the circulation is concerned, the present result is reminiscent of the comparable
vortex-strength-independent result of Dungan & Brenner (1988) for the sedi-
mentation velocity of a brownian particle through a spatially periodic vortex flow.)

Following (5.4) and (11.3), the dimensionless quantity

d
k_= sk2[1 1+8F(K):| (11.7)
represents the ratio of the respective amounts of solute existing in the dissolved and
adsorbed states at each point R of the system, at least for sufficiently long times. On
physical grounds this ratio should be small when either the Henry’s law adsorption
coefficient is small (in which case no solute ‘arrives’ at the bead surfaces), or when
the Damkohler number is large (in which case all solute arriving at the bead surfaces
is immediately depleted by the chemical reaction). Indeed, from (11.7), one finds that
k_—0 as sk,—0 or § ~00. Moreover, as no solute is present on the beads in this limit,
the average solute velocity U* should coincide with the average solvent velocity ..
Evaluation of the pertinent limits in (11.6) confirms this assertion (cf. (6.7b)).
When the Damkohler number is small, all adsorbed solute destroyed via the
chemical reaction is immediately replenished via mass transfer, whence the ratio of
the respective amounts of solute existing in the dissolved and adsorbed states should
correspond to the Henry’s law equilibrium solute partitioning. In fact, with ¢ < 1,

one finds from (11.7) that k_ ~ sk,. Under these circumstances, the general expression
(11.6) for U* adopts the form

e Uyt Sky T
Ut 1+ sk, (@ <),

in accord with (6.7a), as well as with companion result of Haber & Brenner (1993).
(¢) Awial solute dispersivity D*
Again, using the notation adopted in §11a, and upon further defining

def

N =k, d?/D, (11.8)
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as the respective Nusset number (with d the annual gap thickness), the general
expression for the dispersivity (7.11) may be rewritten as

_ 5 2)-1 8 1 \
D*=Dv{l+sk2[l—l—+6ﬁ’(/<)]} {sk N[ sl )]d2 Oﬁd 1B, —B,)?

sk, 2o 1—iﬁ(l<)]2l ar(VB, 2+~ | arvBel. (119
’D, 1-8 ToJs, SR Wy (1L9)

Moreover, with 4, the characteristic circulatory velocity |u,—1u,e,| of the respective

continua, and with
def def

a,d/D,, 7,=u,d/D, (11.10a, b)

a a

the respective circulatory and axial Peclet numbers, (6.15) governing the B-fields
become

ﬂ”—u— V'B,+7,e, VB,— V’ZB(,+sk2N[1—%SF(K)](B;—B,’D)=—77*,
(11.11a)
A ub_ﬁbez r R’ = 13 Db ’ ’ l: 8 :|_1 / ’ —
7, "y 7 e VB, —2V2B, —N|1———F(k)| (B,—B;)=—a*
b N b b b Dv b 1+8 b
(11.11b)

Here, V' = dV is the dimensionless gradient operator; B, = d~' B, is the respective
dimensionless B-field ; whereas (in view of (11.6))

3 der*d 3 6 2_ 3 2) -1
T* —b—z{ﬂv+8kz|:l—mF(K)] ﬂb}{1+8k2|:1—mF(K)]} .

v

Thus, the ratio D*/D, depends upon all the dimensionless parameters previously
introduced, namely sk,, 8, N, D, /D, 7, 7, T, and 7, as well as upon the particular
patterns (u,—u,e,)/4, of the respective velocity fields. With a detailed numerical
study of this extremely complex functional dependence to be published in a
companion paper, we cite here several preliminary conclusions.

(i) When either sk, >0 or §>00, the axial dispersivity D* of the solute in a bead
reactor is the same as if the beads were absent. From a mathematical standpoint, this
result is an immediate consequence of (11.7). In fact, under these circumstances
k_—>0 (cf. the paragraph immediately following (11.7)), whereas, in view of (11.6) and
(11.11), one readily finds that U* = %, and that the B-fields are uncoupled. In view
of (7.14), the above result is apparent. From a physical standpoint, the explanation
of this phenomenon presents no difficulties; for in such circumstances all the solute
that arrives at the beads’ surface is either insignificant in amount (when sk, —0) or
is immediately destroyed by the chemical reaction (when &§->00), leaving the
macroscale transport of the solute controlled exclusively by the solvent.

(ii) When y -0 and the difference between velocity fields of the solvent and beads
is small, the macroscale (axial) dispersivity D* of the solute in a bead reactor may
actually be less than the comparable dispersivity in the absence of the beads. In fact,
upon assuming that the beads are carried along the streamlines of the solvent, and
that the diffusivity of the beads is negligible, that portion of the solute that is
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adsorbed onto the beads does not diffuse at all (cf. (9.11)), and hence does not
contribute to the dispersion process.

(iii) With increasing difference in velocity fields between the beads and solvent, D*
increases (cf. (9.5) and (9.10)). The reason again lies in ‘piggy-back’ convection of the
solute by the beads. This latter process is clearly characterized by the time scale

sk, )

T=-—"21—r
e

3
Fe.
introduced in (9.6a). With 7" supposed large compared with the characteristic time
scale of the molecular diffusion process, the piggy-back convection of solute by the
beads may become the principal mechanism contributing to D*. With the
characteristic time scale of the diffusion process being roughly d?/D, (cf. the para-
graph following (9.11)), these circumstances may be described by the inequality

sky o 8

In particular, when x—0 (cf. (11.5)), this inequality adopts the form
sk, > N(1+6)3,

consistent with the fact that when no solute is present on the beads — namely when
either §—>o00 or sk,—0 (cf. paragraph (i) above)-— piggy-back diffusion cannot
possibly be dominant.

During the research, G.I. was supported, in part, by a Wolfson scholarship administrated by the
Israeli Academy of Sciences. H.B. was supported by the Office of Basic Energy Sciences of the
Department of Energy ; during a portion of the writing of this paper he enjoyed the hospitality of
the Chemical Engineering Department at Carnegie-Mellon University, where he was Gulf Visiting
Professor. Additional project funding was obtained from two sources: the National Science
Foundation under the Engineering Research Center Initiative to the Biotechnology Process
Engineering Center (Cooperative Agreement CDR-88-0314); and the Public Service Grant 1RO1
GM25810-01 from the National Institutes of Health.

Appendix A. Derivation of (5.15)

Subject to a posterior: verification, assume the following eigenfunction expansion
of the zero-order local moments:

(0) 1 0) - Kﬁ’n)
P =T—M + 2 exp (= A0 gt |- (A1)
0 n=1 b

with A, the eigenvalues, and K = K{(r|#';{) the respective eigenfunctions (n =
1,2,...) of the operator [ . + 4] appearing in (5.13) (with boundary conditions (3.7)).
Here, and in all subsequent formulas, a is given by (2.9). Substitute (A 1) into
(3.4) and (3.5) (with m =0), and subsequently utilize (5.1) and (5.2), thereby
establishing that these eigenquantities are governed by the system of equations

KO _ (LK K
Oa =2 (i) = (5 o) 12 (1), (A2)
n [u,K™—D,VK"]=0 on the reactor walls, (A 3)
1K =0, (A4)
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(n=1,2,...). In addition, it is required that
Y K™= §[8(r—r’)—11], S KP=(1-9 [3(r—r’)—l] (Aba, b)
n=1 0 n=1

s0 as to satisfy the initial conditions at ¢t = 0.

In order to derive (5.15) from the general expansion (A 1) it suffices to prove that
the residuals A, —A_, A,—A_, ... are strictly positive. To this end, multiply the upper
of equations of (A 2) by K™ and integrate over the domain 7, of a unit cell to obtain,
with use of some obvious identities,

w—mf EHEDP = f

To

A3V - {Lu [KM]*—D K™ VK™ + D, f d3r[VK™]?

+(k,—A0) J A KM —k, f d3r[K™ K(M).

The left-most integral on the right-hand side of this equation vanishes identically in
view of boundary conditions (2.2a), (A 3) and (A 4); thus,

(An—/\_)f PHEP]? = DVJ Br VKD

+ (k4—/1_)J ar Kg"’]z—klf PrK™KM™]. (A 6a)

Similarly, upon multiplying the lower of equations (A 2) by K{ and subsequently
integrating over the volume of a unite cell, one finds (with use of (5.46)) that

(An—,\_)f PrKM = J Br VKPP + ’“ ks f K™ — J BrK™ K.

(A6D)

Multiply (A6a, b) by k, and k,, respectively, and add together the resulting pair of
expressions to obtain,

(A, —A) {@f KM +k1f der K,‘O”)]Z}

=k, DVJ Br[VK 2 +k, D, J A3 VK]

To

ey (ky— A) J PP —2k, @f

To

kik,
ddr K‘”)K(")]+ Y d3r[K{™)?

=k,D, J d3r[VK‘V"’]2+lebf A3 VK™ + —kT f Bk, — A1) K™ — ke, KM
To To 4

The coefficients D, and D, are both strictly positive, whereas k, and k, are non-
negative by definition; moreover, k,—A_ is non-negative in view of (7.12). Thus
(except possibly for the trivial case where

K™ = const., K™ =k KM,

for which A, = A_), the non-negative nature of the above integrands shows that
A, >A_. Q.E.D.
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Appendix B. Nomenclature

surface area of a bead

matrix defined in (3.5)

scalar fields representing the solution of (6.15)

average values of the respective B-fields over a unit cell
spatially periodic fields defined in (9.1)

coefficient in complex-form Fourier expansion of B,
annular gap between the cylinders

molecular diffusivity of the solute in the solvent
brownian diffusivity of the beads in the solvent

effective axial dispersivity

effective diffusivity dyadic of the adsorbed solute defined in (9.6d)
number density of the beads

unit basis vectors

eigenvectors (of length 2) of [A4]

respective components of E_ | E.

auxiliary function defined in (11.4)

Green’s function of (10.4)

scalar quantities in (7.2)

constant arising during the derivation of (7.11)

dyadic idemfactor

unit 2 x 2 matrix

respective probability flux density vectors

mass transfer coefficient in (2.6)

Henry’s law constant in (2.6)

coefficient in (2.6)

coefficients in (5.4)

constant defined in (9.60)

effective reaction rate

linear dimension of a unit cell in axial direction
matrix-form operator defined in (3.6a)

linear second-order differential operators defined in (3.6b)
column vector (of length 2) of mth-order total moments
respective components of M™

coefficients in (5.2)

coefficient in (6.3) and (7.5), respectively

unit cell position index

unit normal vector to reactor vessel wall

Nusset number (cf. (11.8))

generic quantity that vanishes exponentially as t—o0
conditional probability densities for the instantaneous position of
solute molecule in the respective phases (states)

sum, P,+ P,

column vector (of length 2) with respective components P,
defined in (10.5)

conditional probability densities for the instantaneous axial position of
solute molecule in the respective phases (states)

column vector (of length 2) of mth-order local moments

and P,
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P P{™  respective components of P

r position vector of a point within a unit cell

R position vector of a point in reactor’s annular domain

R, R, respective radii of the inner and outer cylinders

s specific surface (cf. footnote to (2.6))

S source term in (2.4)

S, cross-sectional domain of the reactor

¢ time

T timescale underlining interphase solute transport (cf. (9.6a))

T column vector (of length 2) in (7.5)

T time scale for establishing a uniform solute distribution within a unit
cell

T, time scale for establishing constant solute partitioning between solvent
and beads

u,, u, respective solvent and beads (vector) velocity fields

Uy, Uy respective solvent and bead (scalar) axial velocities

Uy, Uy respective average solvent and bead axial velocities

upy, coefficient in complex-form Fourier expansion of u, —,

U* effective solute velocity defined in (9.9)

U* macroscale average axial solute velocity

ur, coefficient in complex-form Fourier expansion of U*— U*

|4 column vector (of length 2) in (7.5)

V.,V components of V

vV, annular domain

w column vector (of length 2) in (6.4)

w,, W, components of W

X, Y, 2 cartesian coordinates

Z axial (macroscale) coordinate

a state of solute tracer molecule

v rate of solute depletion on bead’s surface (cf. (2.4))

) Damkohler number (cf. (11.1))

d(r—r) Dirac delta function

Omn Kronecker delta

¢ initial phase-partition parameter

K dimensionless parameter defined in (11.2)

AL AL eigenvalues of [4]

A, (n=1,2,...), eigenvalues of the operator [£]+[A4]

w radial coordinate

Ty, Ty circulatory Peclet numbers defined in (11.10a)

Ty, Ty, axial Peclet numbers defined in (11.100)

n total conditional probability density for instantaneous position of
solute molecule

To unit cell volume

indices

a ath-phase

v solvent

b beads

algebraically smallest eigenvalue of [4]
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+ algebraically largest eigenvalue of [4]
(m) mth-order moment (m =0,1,2,...)

initial position of solute tracer molecule

marks over symbols

average over a unit cell, or a macroscale quantity
coefficient in an eigenvector expansion
spatially periodic quantity

A

-

standard operators

\Y% gradient operator
Il ‘jump’ operator denoting an increase in value of the argument between
equivalent points in adjacent cells
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